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The approximate 4s and 3d radial wavefunctions of Richardson et al. [J. chem. Physics 36, 1057
(1962)] for first-row transition-metal atoms and ions have been extended to additional electronic
configurations. The results suggest several improvements in the 4s wavefunction parameters. Formulas
are reported for extending the “double-{” 3d wavefunctions over the range of atomic orbitals d* through
d*°. The results are intended for use in calculations of chemical bonding.

1. Introduction

The extensive use of the approximate Hartree-Fock wavefunctions for first-
row transition metals of Richardson et al. [1, 2] and a need [3-6] for more con-
sistent wavefunctions of the same type indicate that additional 4s and 3d wave-
functions are needed for completeness. A common procedure in LCAO-MO
calculations is to vary the AO’s for the atoms involved in forming the molecule.
By using the wavefunctions of the atoms and ions of the species involved some
insight is gained about the bonding of the molecule. Although it has been claimed
that the one-electron LCAO-MO model is relatively insensitive to the effect of
choice of wavefunctions [7], this has not been the case for orbital energies in
several MO calculations [5, 6, 8].

The 4p wavefunctions of the first-row transition metals are varied extensively
in the reports of Richardson and his co-workers [1, 2] as are the 3d and 4s wave-
functions which are varied over several common oxidation states. Reported in the
present article are approximate 4s wavefunctions for several additional atomic
electronic configuration and formulas for obtaining approximate 3d wave-
functions over the entire range of atomic orbitals d' through d'°.

2. Procedure

By using the procedure similar to that described by Richardson et al. [1], we
have taken the approximate radial s symmetry wavefunctions to have the form

Rns = Z stcks,n (1)
where . ko )
and X = [Q2L)™* " /(2k) 13~ exp(— 1) (2)

[ R R, dr=3,, . 3)
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Thus we have a linear combination of STO’s (Slater type orbitals) which form an
orthonormal set over the s symmetry atomic orbitals. We have taken the ground
state wavefunction for the 1s, 2s, and 3s orbitals for each metal to be adequately [9]
represented by the Schmidt orthogonal sets given by Richardson et al. [1]. The
four term 4s wavefunctions have been constructed to be Schmidt orthogonal to
these orbitals. Consequently the {,, parameter is the only variable remaining to be
determined. Unlike Richardson et al. [1] we have varied the {,, extensively until a
maximum overlap is obtained between the approximate 4s wavefunction and its
corresponding Hartree-Fock wavefunction which is taken from Clementi [10]
tables.

By utilizing the maximization of overlap as the criterion for the choice of {4
for all calculated 4s wavefunctions of neutral atoms and ions, the resulting orbitals
should be more representative of atomic electronic configuration in MO calcu-
lations [11] than those reported by Richardson et al. [1,2] who estimated {,
values for the ions.

The radial 3d wavefunctions obtained by Richardson et al. are of the “double-{”
type with the formula:

) R3g= Cix34,1({0) + Cax34,2(C5) 4
with

£, =020Z+0.15, 5)

£, = 0.30Z — 0.20n — 440, ©)

where Zis the nuclear charge, and n is the number of 3d electrons. The values of the
coefficients in Eq. (4) were obtained by maximizing the overlap with Hartree-Fock
wavefunctions (as were the {, and {, initially). Since Egs. (5) and (6) are compact
formulas for obtaining the {; and {, values, it would be advantageous to have a
compact formula to obtain the coefficients. With this in mind we have in Fig. 1
the C, values plotted against their respective {, values for several of the first-row
transition metals. In Fig. 1 we have that C, is almost linear with {,. Consequently
we have assumed that we can express C, for each metal in the following form as a
function of {, for its respective metal:

Co(M)=ay + oy, +a3(5. (7

The values for «,, a, and a; for each metal were obtained by a quadratic least
square fit of the C, and {, values given by Richardson et al. [1]. The remaining
C, coefficients can be obtained through normalization. With Egs. (4) thru (7) we
now have a systematic procedure for obtaining “double-{” 3d wavefunctions over
the entire range of orbitals from d* to d*°.

3. Results

Overlaps, S, with Hartree-Fock wave functions and parameters for 4s radial
functions are presented in Table 1. From the values of S in this table we see that the
best approximate wavefunctions are obtained for the + 1 metal ions for each of
the metals with a decrease in accuracy with increasing atomic number. The least
accurate representations are obtained with the —1 metal ions, although these are



Table 1. Parameters and overlaps with Hartree-Fock wavefunctions for 4s radial functions
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Metal ' Cr Mn Fe Co Ni Cu
2l 22.395 23.39 24,385 25.38 26.375 27137 28.365
o 8.475 8.90 9.325 9.75 10.175 10.60 11.025
[ 3.85 4,06 427 448 4.69 490 5.11
System Las C, C, C,4 C, St
Ti 24 1.4779 —-0.03614 0.12603 —0.33192 1.04515 0.998
sta? 1.2077 —0.02266 0.07875 —0.20184 1.01691 0.993
s a3 0.8133 ~0.00774 0.02679 —0.06655 1.00185 0.96
vV s%d? 1.5364 - 0.03541 0.12267 —0.31947 1.04177 0.998
s2d? 1.2582 -0.02222 0.07671 —0.19462 101569 0.993
s2d* 0.8390 - 000731 0.02514 —0.06183 1.00159 0.96
Cr 4% 1.5918 ~0.03459 0.11910 —0.30702 1.03852 0.997
s2d* 1.3061 -0.02172 0.07451 —0.18731 1.01450 0.992
s2ds 0.8608 —0.00684 0.02337 —0.05695 1.00135 0.96
Mn s*d* 1.6456 -0.03379 0.11564 —0.29526 1.03558 0.997
s2ds 1.3486 -0.02105 0.07182 —~0.17894 1.01320 0.991
s2d’ 0.8998 ~0.00682 0.02316 —0.05602 1.00130 0.95
Fe 5%d° 1.6954 ~0.03286 0.11191 —0.28317 1.03269 0.996
d° 1.3997 ~0.02076 0.07049 —0.17429 1.01250 0.990
s*d7 0.9290 —-0.00658 0.02224 —0.05340 1.00118 0.95
Co s%dS 1.7504 -0.03224 0.10927 —0.27432 1.03063 0.996
s2d’ 1.4466 -0.02035 0.06877 —0.16881 1.01170 0.99
s2d® 0.9605 -0.00641 0.02158 —0.05147 1.00109 0.95
Ni s2d’ 1.8013 ~0.03148 0.10625 —0.26483 1.02852 0.996
248 1.4913 -0.01989 0.06691 —0.16320 1.01092 0.99
s 0.9881 —~0.00618 0.02072 —0.04912 1.00099 0.96
Cu s*d° 1.5343 ~0.01940 0.06504 —0.15766 1.01017 0.99
§2 4t 1.3505 —0.01380 0.04620 —0.11079 1.00503 0.98
S 1.0085 ~0.00584 0.01951 —0.04597 1.00087 0.95

* {1 £os and {5, values were taken from Richardson er al. J. chem. Physics 36, 1057 (1962).
b S is the overlap between the approximate and the Hartree-Fock wavefunctions.

probably adequate for most purposes. The accuracy obtained for the neutral
ground state wavefunctions is intermediate to that of the +1 and — 1 ions. A close
look at the Hartree-Fock wavefunctions [10] gives some indication as to the
inaccuracy of the —1 ion wavefunctions. Since the +1 ion and neutral atom
wavefunctions have only one or two dominant terms to be represented by the
approximate wavefunction, they can be represented fairly accurately. The —1 ion
Hartree-Fock wavefunctions have three dominant terms which contain a greater
range of zeta values and thus can only be poorly represented by one dominant
term containing {,..

In Table 2 we have tabulated the calculated {,; values and several estimated
values. The many trends within the calculated values lend considerable confidence
to the estimated values. An average value for the differences between successive
calculated {4, values, A{,,, for each horizontal series reveals that each sequence is
uniform and has an almost linear increase. This trend is found in the ground state
{45(3d"4s*) values reported by Richardson et al. [1], but is not found in their
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Table 2. Calculated and estimated {,, values®

Metal Ti v Cr Mn Fe Co Ni Cu ALy
System n=2 3 4 5 6 7 8 9

3d"*l4s2 08133 08390 0.8608 0.8998 09290 09605 (0.986)  1.0085  0.029
4s*  (1.08)  (L12)  (1.16)  (120)  (124)  (1.28)  (1.32) 13505 (0.04)
3d" 45 12077 12582 1.3061 13486 13997 14466 14913 15343 0046
4s'  (1.39)  (L44)  (149) (155  (1.59) (165  (L70)  (175)  (0.05)
34" 1452 14779 15364  1.5918 16456  1.6954 17504 18013 (185 0054
4t (1.60)  (L66) (L7  (178)  (1.83) (194 (194  (199)  (0.06)
3245 (1.66)  (172)  (178) (185  (190)  (1.95)  (201)  (206)  (0.06)

* Values in parentheses are estimated values.

estimated values of {, for ions. On comparison, the values reported in Table 4 of
Ref. [1] are consistently lower on the Ti end of a horizontal sequence and high
on the Ni end of the sequence (e.g., 3d"'4s?, Ti {,, = 1.45 as compared with 1.48
reported here; and Ni {,, = 1.90 as compared with 1.80). By combining the above
mentioned trends with changes in vertical sequences we have made several
estimates for additional {,, values. Some of the values estimated (and also cal-
culated) are similar to those reported by Richardson et al., but several are markedly
different.

_ The coefficients obtained for Eq.(7) for each of the metals considered are
given in Table 3. A standard estimate of error, o, is also given for each curve and
indicates an accuracy of about three significant figures. By comparing graphically
the values reported by Richardson et al. in Fig. 1 with those obtained by extra-
polating with Eq. (7), there seems to be reasonable accuracy except for the case
of Ti. Since there are only four reported [1] values for the C, coefficients for Ti, it
should be expected that a fairly good quadratic least square fit would be obtained.
But we should not place much confidence in the result as shown by curve 1 in

'

Table 3. Coefficients obtained from quadratic least square fits of 3d wavefunction C, coefficients as a
function of {, for the first-row transition metals. Coefficients obtained from a linear least square fit
for Ti are also given®

Metal a o, o3 ox10* N
Ti 0.90085 0.03268 ~0.08312 9.6 4

1.13693 —0.2499%4 47.5 6
v 1.09163 —-0.21257 —0.00892 14.3 5
Cr 1.14006 —0.28382 0.01383 17.0 6
Mn 1.10747 —0.26185 0.01071 6.0 6
Fe 1.04582 —0.21241 0.00133 83 6
Co 1.03985 —0.21358 0.00312 9.5 6
Ni 1.03482 —0.21017 0.00352 17.0 6
Cu 1.13194 —0.28572 0.01895 10.7 5
Average® 1.0845 —0.2400 0.0075

2 g is the standard estimate of error (standard deviation) and N is the number of data points used for

the least square fit.
b The average o; coefficients do not include Ti results.
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Fig. 1. Typical C, versus {, relations for “double-{” 3d wavefunctions. Solid curves for the metals

shown are from those reported by Richardson et al. [J. chem. Physics 36, 1057 (1962)]. Dashed curves

are obtained by using Eq. (7) with the o, coefficients given in Table 3. Curve 1 is the quadratic extension

of C, (Ti) and curve 2 is the linear extension of C, (Ti). The solid black points, @, are obtained by
using the general relation given in Eq. (8)

Fig. 1. A more acceptable curve is obtained with a linear least square fit for C, (Ti)
as illustrated by curve 2 in Fig. 1. This is borne out by considering the trends of the
other metals. Although the C, (Ti) results are probably the poorest, the remaining
curves indicate at least an internal consistency.

By taking an average value for each o; (excluding Ti), we have obtained an
equation that has general validity over the entire range of metals except for Ti and
Cu which are at the ends of the series. The equation is as follows:

C, =1.0845 — 0.2400(, + 0.0075¢2 . (3)

On combining Eq. (8) with Eqs. (4), (5), and (6) we complete the set of equations
for obtaining “double-{” 3d wavefunctions that are fairly accurate from vanadium
through nickel. The solid black points, @, in Fig. 1 are obtained from Eq. (8) and
illustrate the validity of this equation.

4. Conclusions

Although many of the results obtained by this study are similar to those of
Richardson et al. [1, 2] a more reasonable set of {, values is reported for a larger
range of electronic configurations. By reasonable we mean that the wavefunctions
give a fairly good representation of atomic electronic configurations in MO
calculations for approximate 4s wavefunctions. The internal consistency of
estimated {,; values indicate several improvements over previously reported
values.
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With Egs. (4), (5), (6), and (8) we are now able to obtain “double-{” 3d wave-
functions for the sequence of metals from vanadium through nickel with reasonable
accuracy for the entire range of electronic configurations from d* through d'°. A
more accurate representation of the wavefunction can be obtained for each metal
in the sequence from Ti through Cu by using Eq. (7) instead of Eq. (8). Only the
3d wavefunctions of Ti seem to be questionable on being extended to additional
oxidation states.
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