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The approximate 4s and 3d radial wavefunctions of Richardson et al. [J. chem. Physics 36, 1057 
(1962)] for first-row transition-metal atoms and ions have been extended to additional electronic 
configurations. The results suggest several improvements in the 4s wavefunction parameters. Formulas 
are reported for extending the "double-(" 3d wavefunctions over the range of atomic orbitals d 1 through 
d 1~ The results are intended for use in calculations of chemical bonding. 

1. Introduction 

The extensive use of the approximate Hartree-Fock wavefunctions for first- 
row transition metals of Richardson et al. [1, 2] and a need [-3-6] for more con- 
sistent wavefunctions of the same type indicate that additional 4s and 3d wave- 
functions are needed for completeness. A common procedure in LCAO-MO 
calculations is to vary the AO's for the atoms involved in forming the molecule. 
By using the wavefunctions of the atoms and ions of the species involved some 
insight is gained about the bonding of the molecule. Although it has been claimed 
that the one-electron LCAO-MO model is relatively insensitive to the effect of 
choice of wavefunctions [,7], this has not been the case for orbital energies in 
several MO calculations [5, 6, 8]. 

The 4p wavefunctions of the first-row transition metals are varied extensively 
in the reports of Richardson and his co-workers [-1, 2] as are the 3d and 4s wave- 
functions which are varied over several common oxidation states. Reported in the 
present article are approximate 4s wavefunctions for several additional atomic 
electronic configuration and formulas for obtaining approximate 3d wave- 
functions over the entire range of atomic orbitals d ~ through d ~~ 

2. Procedure 

By using the procedure similar to that described by Richardson et al. [,1], we 
have taken the approximate radial s symmetry wavefunctions to have the form 

R.~ = ~ xk~C~,. (1) 

where k = 1 
Zkl ----- [-(2~k/) 2~ + X/(2k) !]3 rk - 1 exp (  -- {kl r) (2) 

and 
R,sR, ,~rZ dr  = 6.,n, . (3) 
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Thus we have a linear combination of STO's (Slater type orbitals) which form an 
orthonormal set over the s symmetry atomic orbitals. We have taken the ground 
state wavefunction for the ls, 2s, and 3s orbitals for each metal to be adequately [9] 
represented by the Schmidt orthogonal sets given by Richardson et al. [1]. The 
four term 4s wavefunctions have been constructed to be Schmidt orthogonal to 
these orbitals. Consequently the (4s parameter is the only variable remaining to be 
determined. Unlike Richardson et  al. [1] we have varied the (4s extensively until a 
maximum overlap is obtained between the approximate 4s wavefunction and its 
corresponding Hartree-Fock wavefunction which is taken from Clementi [10] 
tables. 

By utilizing the maximization of overlap as the criterion for the choice of (~.s 
for all calculated 4s wavefunctions of neutral atoms and ions, the resulting orbitals 
should be more representative of atomic electronic configuration in MO calcu- 
lations [11] than those reported by Richardson e ta l .  [1,2] who estimated (4~ 
values for the ions. 

The radial 3d wavefunctions obtained by Richardson et al. are ofthe"double-(" 
type with the formula: 

R 3d -~- C1 Z3d, 1 ((1) "~ C2 Z3d, 2 ((2) (4) 
with 

(~ = 0 . 2 0 z +  0 .15,  (5) 

(2 = 0.30Z - 0.20n - 4.40, (6) 

where Zis  the nuclear charge, and n is the number of 3d electrons. The values of the 
coefficients in Eq. (4) were obtained by maximizing the overlap with Hartree-Fock 
wavefunctions (as were the (1 and (2 initially). Since Eqs. (5) and (6) are compact 
formulas for obtaining the (1 and (2 values, it would be advantageous to have a 
compact formula to obtain the coefficients. With this in mind we have in Fig. 1 
the C2 values plotted against their respective (2 values for several of the first-row 
transition metals. In Fig. 1 we have that C2 is almost linear with (2. Consequently 
we have assumed that we can express C 2 for each metal in the following form as a 
function of (2 for its respective metal: 

C2(M) = cq + ~2(2 + ~a(~ .  (7) 

The values for ~,, c~ 2 and ~3 for each metal were obtained by a quadratic least 
square fit of the C2 and (2 values given by Richardson et al. [1]. The remaining 
C 1 coefficients can be obtained through normalization. With Eqs. (4) thru (7) we 
now have a systematic procedure for obtaining "double-(" 3d wavefunctions over 
the entire range of orbitals from d t to d ~~ 

3. Results 

Overlaps, S, with Hartree-Fock wave functions and parameters for 4s radial 
functions are presented in Table 1. From the values of S in this table we see that the 
best approximate wavefunctions are obtained for the + 1 metal ions for each of 
the metals with a decrease in accuracy with increasing atomic number. The least 
accurate representations are obtained with the - 1 metal ions, although these are 



Approximate Radial Functions 369 

Table 1. Parameters and overlaps with Hartree-Fock wavefunctions for 4s radial functions 

Metal Ti V Cr Mn Fe Co Ni Cu 

~1~ 21.40 22.395 23.39 24,385 25.38 26.375 27.37 28.365 
~2~ 8.05 8.475 8.90 9.325 9.75 10.175 10.60 11.025 
(3~ 3.64 3.85 4.06 4.27 4.48 4.69 4.90 5.11 

System ~4~ C1 C2 C~ C4 S b 

Ti s2d 1 1.4779 -0.03614 0.12603 -0.33192 1.04515 0.998 
s2d 2 1.2077 -0.02266 0.07875 -0.20184 1.01691 0.993 
s2d 3 0.8133 -0.00774 0.02679 -0.06655 1.00185 0.96 

V sad 2 1.5364 -0.03541 0.12267 -0.31947 1,04177 0.998 
s2d 3 1.2582 -0,02222 0.07671 -0.19462 1.01569 0.993 
s2d 4 0.8390 -0,00731 0.02514 -0.06183 1.00159 0.96 

Cr s2d 3 1.5918 -0,03459 0.11910 -0.30702 1.03852 0.997 
s2d 4 1.3061 -0,02172 0.07451 -0.18731 1.01450 0.992 
s2d s 0.8608 -0,00684 0.02337 -0.05695 1.00135 0.96 

Mn s2d 4 1.6456 -0.03379 0.11564 -0.29526 1.03558 0.997 
s2d 6 1.3486 -0,02105 0.07182 -0.17894 1.01320 0.991 
s2d 7 0.8998 -0.00682 0.02316 -0,05602 1.00130 0.95 

Fe sZd 5 1.6954 -0.03286 0.11191 -0,28317 1.03269 0.996 
s2d 6 1,3997 -0.02076 0,07049 -0,17429 1.01250 0.990 
s2d 7 0.9290 -0.00658 0.02224 -0,05340 1.00118 0.95 

Co s2d 6 1.7504 -0.03224 0.10927 -0,27432 1.03063 0,996 
s 2 d 7 1.4466 - 0,02035 0,06877 - 0.16881 1.01170 0.99 
s2d s 0.9605 -0.00641 0.02158 -0.05147 1.00109 0.95 

Ni s2d 7 1.8013 -0.03148 0.10625 -0.26483 1.02852 0.996 
s2d 8 1,4913 -0,01989 0.06691 -0.16320 1.01092 0,99 
s 2 d ~ o 0.9881 - 0.00618 0.02072 - 0.04912 1.00099 0,96 

Cu s2d 9 1.5343 -0.01940 0,06504 -0.15766 1.01017 0,99 
s2d 1~ 1.3505 -0,01380 0,04620 -0.11079 1.00503 0.98 
s2d 1~ 1.0085 -0.00584 0.01951 -0.04597 1.00087 0,95 

a ~1~, {2, and (3s values were taken from Richardson e t  al. J. chem. Physics 36, 1057 (1962), 
b .S is the overlap between the approximate and the Hartree-Fock wavefunctions. 

probably adequate for most purposes. The accuracy obtained for the neutral 
ground state wavefunctions is intermediate to that of the + 1 and - 1 ions. A close 
look at the Hartree-Fock wavefunctions [10] gives some indication as to the 
inaccuracy of the - 1  ion wavefunctions. Since the + 1 ion and neutral atom 
waveftmctions have only one or two dominant terms to be represented by the 
approximate wavefunction, they can be represented fairly accurately. The - 1 ion 
Hartree-Fock wavefunctions have three dominant terms which contain a greater 
range of zeta values and thus can only be poorly represented by one dominant 
term containing (42- 

In Table 2 we have tabulated the calculated (45 values and several estimated 
values. The many trends within the calculated values lend considerable confidence 
to the estimated values. An average value for the differences between successive 
calculated ~4~ values, A (4~, for each horizontal series reveals that each sequence is 
uniform and has an almost linear increase. This trend is found in the ground state 
~4~(3d"4s 2) Values reported by Richardson et al. [1], but is not found in their 
25 Theoret. chim. Acta (Berl.) Vok 27 
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Table 2. Calculated and  estimated (~s valuesa 

Metal Ti V Cr M n  Fe Co Ni Cu A (4s 
System n = 2 3 4 5 6 7 8 9 

3d"+14s 2 0.8133 0.8390 0.8608 0.8998 0.9290 0.9605 (0.986) 1.0085 0.029 
4s 1 (1.08) (1.12) (1.16) (1.20) (1.24) (1.28) (1.32) 1.3505 (0.04) 

3d" 4s 2 1.2077 1.2582 1.3061 1.3486 1.3997 1.4466 1.4913 1.5343 0.046 
4s ~ (1.39) (1.44) (I.49) (1.55) (1.59) (1.65) (1.70) (1.75) (0.05) 

3d"-14s  2 1.4779 1.5364 1.5918 1.6456 1.6954 1.7504 1.8013 (1.85) 0.054 
4s 1 (1.60) (1.66) (1.72) (1.78) (1.83) (1.94) (1.94) (1.99) (0.06) 

3d"-24s  z (1.66) (1.72) (1.78) (1.85) (1.90) (1.95) (2.01) (2.06) (0.06) 

a Values in parentheses are estimated values. 

estimated values of (4s for ions. On comparison, the values reported in Table 4 of 
Ref. [1] are consistently lower on the Ti end of a horizontal sequence and high 
on the Ni end of the sequence (e.g., 3dn-14s 2, Ti (4s = 1.45 as compared with 1.48 
reported here; and Ni (4~ = 1.90 as compared with 1.80). By combining the above 
mentioned trends with changes in vertical sequences we have made several 
estimates for additional (4s values. Some of the values estimated (and also cal- 
culated) are similar to those reported by Richardson et al., but several are markedly 
different. 

The coefficients obtained for Eq. (7) for each of the metals considered are 
given in Table 3. A standard estimate of error, o-, is also given for each curve and 
indicates an accuracy of about three significant figures. By comparing graphically 
the values reported by Richardson et al. in Fig. 1 with those obtained by extra- 
polating with Eq. (7), there seems to be reasonable accuracy except for the case 
of Ti. Since there are only four reported [1] values for the C2 coefficients for Ti, it 
should be expected that a fairly good quadratic least square fit would be obtained. 
But we should not place much confidence in the result as shown by curve 1 in 

? 

Table 3. Coefficients obtained from quadratic least square fits of 3d wavefunction C 2 coefficients as a 
function of ~2 for the first-row transition metals. Coefficients obtained from a linear least square fit 

for Ti are also given a 

Metal ~ ~2 ~3 a • 104 N 

Ti 0.90085 0.03268 -0 .08312 9.6 4 
1.13693 -0 .24994 47.5 6 

V 1.09163 -0 .21257 -0 .00892 14.3 5 
Cr 1.14006 -0 .28382 0.01383 17.0 6 
Mn 1.10747 -0 .26185 0.01071 6.0 6 
Fe 1.04582 -0.21241 0.00133 8.3 6 
Co 1.03985 -0 .21358 0.00312 9.5 6 
Ni 1.03482 -0 .21017 0.00352 17.0 6 
Cu 1.13194 -0 .28572 0.01895 10.7 5 

Average b 1.0845 -- 0.2400 0.0075 

a a is the 's tandard estimate of error (standard deviation) and N is the number  of data points used for 
the least square fit. 

b The average a, coefficients do not include Ti results. 
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Fig. 1. Typical C 2 v e r s u s  (2 relations for "double-~" 3d wavefunctions. Solid curves for the metals 
shown are from those reported by Richardson et al. [J. chem. Physics 36, 1057 (1962)]. Dashed curves 
are obtained by using Eq. (7) with the ei coefficients given in Table 3. Curve 1 is the quadratic extension 
of C2 (Ti) and curve 2 is the linear extension of C 2 (Ti). The solid black points, O, are obtained by 

using the general relation given in Eq. (8) 

Fig. 1. A more  acceptable  curve is ob ta ined  with a linear least square fit for C2 (Ti) 
as i l lustrated by curve 2 in Fig. 1. This is borne  out  by considering the trends of  the 
other  metals.  Al though the C 2 (Ti) results are p robab ly  the poorest ,  the remaining 
curves indicate at least an internal  consistency. 

By taking an average value for each ei (excluding Ti), we have obta ined  an 
equat ion tha t  has general  validity over  the entire range of metals  except for Ti  and  
Cu which are at the ends of the series. The  equat ion is as follows: 

C2 = 1.0845 - 0.2400~2 + 0.0075~ 2 . (8) 

On  combining  Eq. (8) with Eqs. (4), (5), and (6) we complete  the set of  equat ions 
for obta ining "double-~" 3d wavefunct ions that  are fairly accurate  f rom vanad ium 
through  nickel. The  solid black points, Q ,  in Fig. 1 are ob ta ined  f rom Eq. (8) and  
illustrate the validity of  this equation.  

4. Conclusions 

Although m a n y  of the results obta ined  by this s tudy are similar to those of  
Richardson  et al. [1, 2] a more  reasonable  set of ~4s values is repor ted  for a larger 
range of electronic configurations.  By reasonable  we mean  that  the wavefunct ions 
give a fairly good  representa t ion  of a tomic  electronic configurat ions in M O  
calculat ions for app rox ima te  4s wavefunctions.  The  internal consistency of 
es t imated ~4s values indicate several improvemen t s  over  previously repor ted  
values. 

25* 
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W i t h  Eqs. (4), (5), (6), and  (8) we are  now able  to ob t a in  "doub le - ( "  3d wave-  
funct ions for the  sequence of  meta ls  f rom v a n a d i u m  th rough  nickel  with r easonab le  
accuracy  for the  ent i re  range  of  e lect ronic  conf igura t ions  from d 1 th rough  d I~ A 
m o r e  accura te  r ep resen ta t ion  of  the wavefunct ion  can be ob t a ined  for each meta l  
in the sequence f rom Ti t h r o u g h  Cu by  using Eq. (7) ins tead  of  Eq. (8). On ly  the 
3d wavefunct ions  of  Ti seem to be ques t ionab le  on being ex tended  to add i t i ona l  
ox ida t ion  states. 
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